Abstract:Position emission tomography detects the uptake of tracer to reflect the functional and metabolic status of cells and tissues in order to further diagnose malignant and benign lesions. Whole body diffusion-weighted imaging is a new technique of functional magnetic resonance imaging. It has a broad prospect in screening lesions and evaluation of cancer staging. As two kinds of techniques that can be used for whole body imaging, it is necessary to make clear the advantages and reasonable choices of each of them. This article reviews the diagnostic value and research progress of the two in tumor and inflammatory diseases.
李可心,孙洪赞,郭启勇. PET与WB-DWI诊断肿瘤及炎症疾病的研究进展[J]. 中国临床医学影像杂志, 2018, 29(4): 291-294.
LI Ke-xin, SUN Hong-zan, GUO Qi-yong. Research progress of PET and WB-DWI in the diagnosis of tumor and inflammatory diseases. JOURNAL OF CHINA MEDICAL IMAGING, 2018, 29(4): 291-294.
[1]Padhani AR, Koh DM, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions[J]. Radiology, 2011, 261(3): 700-718.
[2]Morani AC, Elsayes KM, Liu PS, et al. Abdominal applications of diffusion-weighted magnetic resonance imaging: where do we stand[J]. World J Radiol, 2013, 5(3): 68-80.
[3]Boeker M, Franca F, Bronsert P, et al. TNM-O: ontology support for staging of malignant tumours[J]. J Biomed Semantics, 2016, 7(1): 64.
[4]Surov A, Stumpp P, Meyer HJ, et al. Simultaneous (18)F-FDG-PET/MRI: associations between diffusion, glucose metabolism and histopathological parameters in patients with head and neck squamous cell carcinoma[J]. Oral Oncol, 2016, 58: 14-20.
[5]Rasmussen JH, Norgaard M, Hansen AE, et al. Feasibility of multiparametric imaging with PET/MR in head and neck squamous cell carcinoma[J]. J Nucl Med, 2017, 58(1): 69-74.
[6]Ohba Y, Nomori H, Mori T, et al. Is diffusion-weighted magnetic resonance imaging superior to positron emission tomography with fludeoxyglucose F18 in imaging non-small cell lung cancer?[J]. J Thorac Cardiovasc Surg, 2009, 138(2): 439-445.
[7]Regier M, Derlin T, Schwarz D, et al. Diffusion weighted MRI and 18F-FDG PET/CT in non-small cell lung cancer(NSCLC): does the apparent diffusion coefficient(ADC) correlate with tracer uptake(SUV)?[J]. Eur J Radiol, 2012, 81(10): 2913-2918.
[8]Schmidt H, Brendle C, Schraml C, et al. Correlation of simultaneously acquired diffusion-weighted imaging and 2-deoxy-[18F] fluoro-2-D-glucose positron emission tomography of pulmonary lesions in a dedicated whole-body magnetic resonance/positron emission tomography system[J]. Invest Radiol, 2013, 48(5): 247-255.
[9]Zhang S, Xin J, Guo Q, et al. Comparison of tumor volume between PET and MRI in cervical cancer with hybrid PET/MR[J]. Int J Gynecol Cancer, 2014, 24(4): 744-750.
[10]Sun H, Xin J, Zhang S, et al. Anatomical and functional volume concordance between FDG PET, and T2 and diffusion-weighted MRI for cervical cancer: a hybrid PET/MR study[J]. Eur J Nucl Med Mol Imaging, 2014, 41(5): 898-905.
[11]Shih IL, Yen RF, Chen CA, et al. Standardized uptake value and apparent diffusion coefficient of endometrial cancer evaluated with integrated whole-body PET/MR: correlation with pathological prognostic factors[J]. J Magn Reson Imaging, 2015, 42(6): 1723-1732.
[12]Kong E, Chun KA, Bae YK, et al. Integrated PET/MR mammography for quantitative analysis and correlation to prognostic factors of invasive ductal carcinoma[J]. Q J Nucl Med Mol Imaging, 2018, 62(1): 118-126.
[13]Karan B, Pourbagher A, Torun N. Diffusion-weighted imaging and (18) F-fluorodeoxyglucose positron emission tomography/computed tomography in breast cancer: correlation of the apparent diffusion coefficient and maximum standardized uptake values with prognostic factors[J]. J Magn Reson Imaging, 2016, 43(6): 1434-1444.
[14]Cerny M, Dunet V, Prior JO, et al. Initial staging of locally advanced rectal cancer and regional lymph nodes: comparison of diffusion-weighted MRI with 18F-FDG-PET/CT[J]. Clin Nucl Med, 2016, 41(4): 289-295.
[15]Tomizawa M, Shinozaki F, Uchida Y, et al. Diffusion-weighted whole-body imaging with background body signal suppression/T2 image fusion and positron emission tomography/computed tomography of upper gastrointestinal cancers[J]. Abdom Imaging, 2015, 40(8): 3012-3019.
[16]Usuda K, Sagawa M, Maeda S, et al. Diagnostic performance of whole-body diffusion-weighted imaging compared to PET-CT plus brain MRI in staging clinically resectable lung cancer[J]. Asian Pac J Cancer Prev, 2016, 17(6): 2775-2780.
[17]Schaarschmidt BM, Buchbender C, Nensa F, et al. Correlation of the apparent diffusion coefficient(ADC) with the standardized uptake value(SUV) in lymph node metastases of non-small cell lung cancer(NSCLC) patients using hybrid 18F-FDG PET/MRI[J]. PLoS One, 2015, 10(3): e0122545.
[18]Usuda K, Maeda S, Motono N, et al. Diagnostic performance of diffusion-weighted imaging for multiple hilar and mediastinal lymph nodes with FDG accumulation[J]. Asian Pac J Cancer Prev, 2015, 16(15): 6401-6406.
[19]Choi EK, Kim JK, Choi HJ, et al. Node-by-node correlation between MR and PET/CT in patients with uterine cervical cancer: diffusion-weighted imaging versus size-based criteria on T2WI[J]. Eur Radiol, 2009, 19(8): 2024-2032.
[20]Miccò M, Vargas HA, Burger IA, et al. Combined pre-treatment MRI and 18F-FDG PET/CT parameters as prognostic biomarkers in patients with cervical cancer[J]. Eur J Radiol, 2014, 83(7): 1169-1176.
[21]Ergul N, Kadioglu H, Yildiz S, et al. Assessment of multifocality and axillary nodal involvement in early-stage breast cancer patients using 18F-FDG PET/CT compared to contrast-enhanced and diffusion-weighted magnetic resonance imaging and sentinel node biopsy[J]. Acta Radiol, 2015, 56(8): 917-923.
[22]Ono K, Ochiai R, Yoshida T, et al. Comparison of diffusion-weighted MRI and 2-[fluorine-18]-fluoro-2-deoxy-D-glucose positron emission tomography(FDG-PET) for detecting primary colorectal cancer and regional lymph node metastases[J]. J Magn Reson Imaging, 2009, 29(2): 336-340.
[23]Ohno Y, Koyama H, Onishi Y, et al. Non-small cell lung cancer: whole-body MR examination for M-stage assessment—utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT[J]. Radiology, 2008, 248(2): 643-654.
[24]Takenaka D, Ohno Y, Matsumoto K, et al. Detection of bone metastases in non-small cell lung cancer patients: comparison of whole-body diffusion-weighted imaging(DWI), whole-body MR imaging without and with DWI, whole-body FDG-PET/CT, and bone scintigraphy[J]. J Magn Reson Imaging, 2009, 30(2): 298-308.
[25]Lee SM, Goo JM, Park CM, et al. Preoperative staging of non-small cell lung cancer: prospective comparison of PET/MR and PET/CT[J]. Eur Radiol, 2016, 26(11): 3850-3857.
[26]Granata V, Fusco R, Catalano O, et al. Early assessment of colorectal cancer patients with liver metastases treated with antiangiogenic drugs: the role of intravoxel incoherent motion in diffusion-weighted imaging[J]. PLoS One, 2015, 10(11): e0142876.
[27]Lee DH, Lee JM, Hur BY, et al. Colorectal cancer liver metastases: diagnostic performance and prognostic value of PET/MR imaging[J]. Radiology, 2016, 280(3): 782-792.
[28]Ippolito D, Fior D, Trattenero C, et al. Combined value of apparent diffusion coefficient-standardized uptake value max in evaluation of post-treated locally advanced rectal cancer[J]. World J Radiol, 2015, 7(12): 509-520.
[29]Giraudo C, Raderer M, Karanikas G, et al. 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance in lymphoma: comparison with 18F-fluorodeoxyglucose positron emission tomography/computed tomography and with the addition of magnetic resonance diffusion-weighted imaging[J]. Invest Radiol, 2016, 51(3): 163-169.
[30]Mosavi F, Wassberg C, Selling J, et al. Whole-body diffusion-weighted MRI and (18)F-FDG PET/CT can discriminate between different lymphoma subtypes[J]. Clin Radiol, 2015, 70(11): 1229-1236.
[31]Ohno Y, Koyama H, Yoshikawa T, et al. Three-way comparison of whole-body MR, coregistered whole-body FDG PET/MR, and integrated whole-body FDG PET/CT imaging: TNM and stage assessment capability for non-small cell lung cancer patients[J]. Radiology, 2015, 275(3): 849-861.
[32]Regacini R, Puchnick A, Shigueoka DC, et al. Whole-body diffusion-weighted magnetic resonance imaging versus FDG-PET/CT for initial lymphoma staging: systematic review on diagnostic test accuracy studies[J]. Sao Paulo Med J, 2015, 133(2): 141-150.
[33]Derlin T, Bannas P. Imaging of multiple myeloma: current concepts[J]. World J Orthop, 2014, 5(3): 272-282.
[34]Basu S, Chryssikos T, Moghadam-Kia S, et al. Positron emission tomography as a diagnostic tool in infection: present role and future possibilities[J]. Semin Nucl Med, 2009, 39(1): 36-51.
[35]Kumar Y, Khaleel M, Boothe E, et al. Role of diffusion weighted imaging in musculoskeletal infections: current perspectives[J]. Eur Radiol, 2017, 27(1): 414-423.
[36]Kogan F, Fan AP, McWalter EJ, et al. PET/MRI of metabolic activity in osteoarthritis: a feasibility study[J]. J Magn Reson Imaging, 2017, 45(6): 1736-1745.
[37]AlSabban Z, Church P, Moineddin R, et al. Accuracy and interobserver agreement of diffusion-weighted imaging in pediatric inflammatory bowel disease[J]. Clin Imaging, 2017, 41: 14-22.
[38]Stanescu-Siegmund N, et al. Quantification of inflammatory activity in patients with Crohn’s disease using diffusion weighted imaging(DWI) in MR enteroclysis and MR enterography[J]. Acta Radiol, 2017, 58(3): 264-271.
[39]Catalano OA, Gee MS, Nicolai E, et al. Evaluation of quantitative PET/MR enterography biomarkers for discrimination of inflammatory strictures from fibrotic strictures in Crohn disease[J]. Radiology, 2016, 278(3): 792-800.
[40]Prato FS, Butler J, Sykes J, et al. Can the inflammatory response be evaluated using 18F-FDG within zones of microvascular obstruction after myocardial infarction?[J]. J Nucl Med, 2015, 56(2): 299-304.
[41]Gong J, Cao W, Zhang Z, et al. Diagnostic efficacy of whole-body diffusion-weighted imaging in the detection of tumour recurrence and metastasis by comparison with 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography or computed tomography in patients with gastrointestinal cancer[J]. Gastroenterol Rep(Oxf), 2015, 3(2): 128-135.
[42]Varoquaux A, Rager O, Dulguerov P, et al. Diffusion-weighted and PET/MR imaging after radiation therapy for malignant head and neck tumors[J]. Radiographics, 2015, 35(5): 1502-1527.
[43]Soderlund AT, Chaal J, Tjio G, et al. Beyond 18F-FDG: characterization of PET/CT and PET/MR scanners for a comprehensive set of positron emitters of growing application—18F, 11C, 89Zr, 124I, 68Ga, and 90Y[J]. J Nucl Med, 2015, 56(8): 1285-1291.
[44]Lai CH, Lin G, Yen TC, et al. Molecular imaging in the management of gynecologic malignancies[J]. Gynecol Oncol, 2014, 135(1): 156-162.